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A RNN-based objective video quality measurement

Xuan Huang (��� ZZZ)∗, Rong Zhang (ÜÜÜ JJJ), and Jianxin Pang (


ïïï###)

Department of Electronic Engineering and Information Science,

University of Science and Technology of China, Hefei 230027, China
∗E-mail: xuan@mail.ustc.edu.cn

Received January 6, 2009

Technology used to automatically assess video quality plays a significant role in video processing areas.
Because of the complexity of video media, there are great limitations to assess video quality with only
one factor. We propose a new method using artificial random neural networks (RNNs) with motion
evaluation as an estimation of perceived visual distortion. The results are obtained through a nonlinear
fitting procedure and well correlated with human perception. Compared with other methods, the proposed
method performs more adaptable and accurate predictions.
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Image/video quality assessment is a fundamental prob-
lem in the image processing filed[1]. It is important
for compression systems and subsequent media services.
Video has not only spatial correlations but also tempo-
ral correlations, so traditional image quality assessment
methods cannot be applied in video directly. A great
deal of investigations have been carried out, making sig-
nificant achievement. And a known framework for per-
formance evaluation of new objective video quality as-
sessment methods has been recommended by the Video
Quality Experts Group (VQEG)[2]. Furthermore, VQEG
provides ten models to assess video quality[3]. Among
them, peak signal-to-noise ratio (PSNR) is one of the
most popular models and is still used widely.

Many video quality assessment models have been devel-
oped recently. Pessoa et al. presented a methodology[4]

which worked when the video was processing video by
unidirectional transmission systems that used digital in-
terfaces and, ideally, digital transport facilities. Some
quality assessment metrics use much simpler transforms
such as the discrete cosines transform (DCT)[5] and the
separable wavelet transforms[6], which all achieve com-
parable results. Wang et al. introduced a structural
similarity (SSIM) measurement[7]. SSIM includes three
factors which are luminance, contrast, and structure com-
parison, and is considered as a significant expression in
human visual system (HVS).

Because of the complexity of video sequences, most
video quality assessment models have a limitation that
they use only one or a few factors to formulate video
quality. A recent research in HVS has shown that there
are at least five spatial-temporal interactive filters work-
ing together for visual perception[8]. The perception is
combined with various factors, and the former models
are not adaptable in extensive conversation. Perception
and vision applications have been widely used in vast
areas[9,10]. In this letter, a new substantial version of the
algorithm called random neutral network (RNN)[11] is
employed for video quality assessment. The RNN model
represents the biophysical neural network signal trans-
mitting manner more clearly, and yields strong general-
ization capabilities. These signals travel as voltage spikes

rather than fixed signal levels. This tool has a high level
of connectivity[12], which could be called self-description.
The model also has fast-learning feature due to its com-
putational simplicity for weight updating process.

The ith RNN neuron, as Gelenbe formulated[11], is
defined using the following parameters: Λi and λi mean
the rates of exogenous excitatory and inhibitory signals
arriving at the neuron from a source outside of the net-
work, while Wji

+ and Wji
− stand for arrival rates of

excitatory and inhibitory signals from neuron j; ki(t) is
the instantaneous potential of the neuron. The neuron’s
state in a time interval ∆t varies that

Ki(t + ∆t) =

{

Ki(t) − 1, when fired
Ki(t) + 1, excitatory signal arrive .

(1)

If Ki(t) is strictly positive, the neuron is excited, and
it randomly sends signals according to a Poisson process
with rate rr.

Figure 1 shows the representation of a neuron in the
RNN using the model parameters that have been defined
above. All the other neurons can be interpreted as the
replicas of neuron i.

For steady probability analysis, let p(k) denote the
stationary probability distribution, and its definition is
limt→∞ P [k(t) = K]. The existence of the limit has been
proved by Genlenbe[11].

Fig. 1. Neuron model in RNN.
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The learning algorithm trains the RNN with K input-
output pairs (l, Y ) and iterates the network param-
eters W . For an input vector l = {l1· · · ,lk}, where
lk is a pair of excitation and inhibition signal flow
rates entering each neuron from outside of the net-
work, denoted as lk = (Λk, λk). The partial derivative
of the cost function can compute and substitute the up-
dating difference equation in Gelenbe’s formulation[11]:

Wt + ∆t(u, v) = Wt(u, v)

−ηΣn
i=1ai(qi − yik)[∂qi/∂W (u, v)], (2)

where η is the learning parameter and is a constant,

qi = λ+(i)/[r(i) + λ−(i)] (3)

λ+(i) = ΣjqjW
+
ji + Λ(i), (4)

λ−(i) = ΣjqjW
−

ji + λ(i). (5)

In Eq. (2), the core algorithm is to calculate the
[∂qi/∂W (u, v)]. Once the K learning values have been
used, the whole process is repeated until some conver-
gence conditions are satisfied.

Our model achievement is discribed detailedly as fol-
lows. And the whole framework is summarized as Fig. 2.
The model uses the VQEG Phase I FR-TV test
sequences[2]. These media are stored as Y UV format,
which contains a color space in terms of one luminance
and two chrominance components. The subjective test
result comes from double stimulus continuous quality
scale (DSCQS) method[2]. In DSCQS, a difference score
is defined as the difference between the rates for the ref-
erence sequence and the test sequence.

Referring to VQEG documents, the experiment
presents 12 quality-affecting parameters that have the
highest impact on the quality. The feature vector at
frame i is defined as Xi = (x1· · ·x12). x1 is the mean
square error (MSE). x2 is the PSNR. x3 − x5 denote the
SSIM[7] luminance, contrast, and structure. x6 and x7

are SI loss and SI gain: spatial information (SI) is de-
noted as fSI13 since images are pre-processed using 13×13
filter masks. The feature is computed as standard devia-
tion (std) over the spatial-temporal (S-T) region of R(i,
j, t) samples.

fs1 = {std[R(i, j, t]} : i, j, t ∈ {S − T region}. (6)

x8 and x9 are HV loss and HV gain: the image with
horizontal and vertical gradients, denoted as HV, con-
tains the R(i, j, t) pixels that are horizontal or vertical
edges (pixels that are diagonal edges are zeroed). Gra-
dient magnitudes R(i, j, t) are zeroed in both images to
compute accurate θ:

HV(i, j, t) =
{

R (i, j, t), m
π

2
− ∆θ < θ < m

π

2
+ ∆θ

0, otherwise
. (7)

x10 and x11 are CI spread and CI extreme: chrominance
information (CI) is a single feature used to measure
distortions in the chrominance signals (blue- and red-
difference chroma components CB, CR). The components

of a two-dimensional chrominance feature vector, CI, is
computed as the mean over the S-T region of the CB and
CR samples:

fcoher color = (mean[CB(i, j, t), 1.5 × mean(CR(i, j, t)]),

i, j, t ∈ {S − T region}. (8)

x12 represents CT: contati (CT) is a measurement of lo-
calized contrast information which is sensitive to quality
degradations such as blurring (contrast loss) and addi-
tive noise (contrast gain). One localized contrast feature
is computed from the luminance image as

fcont = {std[Y (i, j, t)]} : i, j, t ∈ {S − T region}. (9)

These distorted features are used to estimate static
spatial correlations, while video also has temporal corre-
lations that determine the intensity of movement within
the moving region. As mentioned by Wang et al.[7], in
moving regions, HVS has low intensity, while it has high
intensity in rarely changing scene. In this letter, an ad-
justment method is employed, and the influence algo-
rithm of motion vector (MV) is explained as follows.
1) For the ith frame, calculate the video feature vector
Xi;
2) compute motion estimation of reference video by H.264
platform, set the MV to MVi;
3) define the global feature vector as

Fvideo = (Σn
i=1Xi/MVi)/(Σn

i=1 = 1/MVi). (10)

The training process intends to find high dimensional-
ity correlations between data attributes and parameters.
A half of the distorted videos, containing 80 samples, are
used to train the RNN weights, while other videos are
used to assess the model performance. The processed
RNN is trained using the learning algorithm given above
to minimize the square of sum errors (SSE). When the
iteration reaches the maximal limit or the SSE is less
than the threshold, the training procedure stops. The
implement uses a three-layer RNN which consists of 12
neurons in the input layer (corresponding to the 12 cho-
sen parameters), 35 neurons in the hidden layer, and one
output neuron. The SSE threshold is 0.0005. The learn-
ing rate is set to 0.1. The maximal number of iterations
equals 700. The firing rate of the output neuron is 0.1
and the range of weight initialization is 0.2.

After the training procedure, the neural network reads
input data and outputs the evaluation with formed pat-
tern. The output is stored as result data. Then,
the model’s performance is evaluated with respect to
the prediction accuracy mainly. Logistic functions are
used in a fitting procedure to provide a nonlinear map-
ping between the objective and subjective scores. In
VQEG plan, the regression of degradation mean opin-
ion score (DMOS) against objective model scores may
not adequately represent the relative degree of consis-
tency of subjective scores[7]. Hence, a metric with vari-
ance weighted regression analysis is included in order to
factor this variability into correlation rates. The logis-
tic function applies a weighted least square procedure to
minimize the error of the following function:

Y w
i = Wi

[

β1 − β2

1 + e−(X−β3)/β4

+ β2

]

+ εi, i = 1, · · · , n, (11)
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Fig. 2. Proposed video quality assessment framework.

Table 1. Performance Comparison of Twelve Models

Data All Low Quality High Quality 625∗ 525∗

SSIM 0.794 0.790 0.762 0.780 0.803

PSNR 0.804 0.813 0.782 0.826 0.752

P1 0.777 0.867 0.726 0.672 0.806

P2 0.792 0.836 0.695 0.759 0.837

P3 0.726 0.73 0.721 0.808 0.725

P4 0.622 0.584 0.656 0.665 0.657

P5 0.778 0.819 0.701 0.684 0.866

P6 0.277 0.36 0.33 0.347 0.373

P7 0.792 0.761 0.757 0.78 0.789

P8 0.845 0.827 0.666 0.864 0.739

P9 0.781 0.745 0.647 0.76 0.775

RNN 0.885 0.907 0.806 0.887 0.869

∗625 and 525 are standard formats of Y UV , media files.
Both of them contain 720 pixels per horizontal line. The 525
sequences have 486 active lines per frame and the 625 se-
quences have 576 active lines per frame. The 525 sequences
are 260 frames long and the 625 sequences are 220 frames
long.

Fig. 3. Result comparison.

where initial estimations of parameters are Yi is the ith
DMOS, β1 = max(Yi), β2 = min(Yi), β3 = mean(x),
β4 = 1, wi = 1/σ(Yi), σ(Yi) means the variance of the
ith DMOS value, Y w

i = Wi × Yi, εw
i = wt× εi, εi is the

ith residual.
As previously described weight regression, Xi is the

ith fitted value with objective scores. And the weighted
correlation rw can be computed via

rw =
Σn

i=1wi(Xi − X̄w)(Yi − Ȳw)
√

Σn
i=1wi(Xi − X̄w)2Σn

i=1wi(Yi − Ȳw)2
, (12)

where X̄w = Σn
i=1Xiwi/Σn

i=1wi, Yi is the ith DMOS,
wi=1/σ2

Y , Ȳw = Σn
i=1Yiwi/Σn

i=1wi, σ2
Y is the standard

deviation of the ith DMDS value.
After the whole process on data set, the nonlinear re-

gression correlations of performance comparison for all
12 models (included RNN, PSNR, SSIM, and the VQEG
models P1 to P9[2]) are given below.

Table 1 and Fig. 3 shows the objective comparisons on
all test video sequences of the VQEG Phase I proponent
and the proposed method with weighted adjustment,
respectively. The results with weighted adjustment indi-
cate that the proposed RNN method is better than all
the other models, about 10% higher than the average.
The performances of P0, P1, P2, P3, P4, P5, P7, P8,
P9, and SSIM are statistically equivalent.

For further works, we will investigate some other ways.
For example, the RNN-based theory could cooperate
with multiple-layer perception (MLP) based tools which
concern the human visual perception under multi-scales.

In conclusion, we design a new objective video quality
assessment system. The method’s key feature is the use
of RNN and multiple distorted factors instead of one
factor for quality evaluation. Experiments on VQEG
FR-TV Phase I test data set show that this method has
good correlation with subjective video quality assessment
and is more adaptable and accurate in human visual pre-
dictions.
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